
Text-DiffScene: Text-driven 3D Scene Synthesis with
Permutation Equivariant Graph Diffusion

Ananth Kalyanasundaram, Yinyu Nie, Matthias Nießner
Technical University of Munich

{ananth.kalyanasundaram, yinyu.nie, niessner}@tum.de

Abstract

We address the task of scene synthesis by generating the object location, orientation
and size of 3D objects of a scene in one go, conditioned on natural languages
describing each object. To achieve this, we leverage diffusion models and explore
their properties. We develop permutation equivariant diffusion models capable
of processing scenes as a whole in one forward pass. While conventional scene
generation approaches depend on the 2D or 3D representation of scenes alongside
the location of objects, and assume the potential associations between them, our
method does not utilize any visual information. Instead, we implicitly acquire
object relationships through the attention layers used in our diffusion model. Later,
we also use scene graphs and develop permutation equivariant graph diffusion
models to generate scene graphs. This is the first effort that utilizes permutation
equivariant diffusion models in order to generate the properties of 3D objects in a
scene from language prompts.

1 Introduction

Figure 1: We address the task of 3D scene synthesis conditioned on natural languages.

Realistic 3D indoor scenes are highly valuable in various real-world applications related to 3D content
creation. For instance, companies specializing in real estate and interior furnishing can visualize
furnished rooms and their contents quickly without the need to rearrange any physical objects. These
virtual rooms can be showcased through augmented or virtual reality platforms, such as a headset,
providing users with the ability to walk through and interactively modify their future homes.

We address the task of scene synthesis conditioned on natural languages by generating objects and
their arrangement. This is done by generating the objects’ location, orientation and size. Consequently,
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Figure 2: Pipeline of our method. As input, we take sentences describing each object in the scene
and process it into 512 dimensional embedding with a pretrained CLIP text encoder. Conditioned on
this embedding, we generate the location, orientation and size of each object in the scene. Then we
use nearest neighbour retrieval from the CAD dataset to select objects for each bounding box.

the most relevant CAD model for each object is retrieved from a database and placed in the scene at
the predicted location.

The conventional approach to modeling and generating scenes involves framing it as an optimization
problem, where scene prior constraints are predefined based on design rules for the layout, object
categories[1; 2; 3; 4], affordance maps[5; 6], or scene arrangement[7; 6]. In this line of work, the
initial scene is sampled, and the scene configurations are iteratively optimized. However, defining
these rules is a time-consuming and laborious process that requires the expertise of skilled artists.
The scene optimization stage is also often tedious and computationally inefficient. Additionally, the
pre-defined design rules can only represent basic and straightforward scene compositions, failing to
capture all possible scenes.

For synthesizing complex scenes, deep generative models were used to learn scene priors [8; 9; 10]
from large datasets. Methods based on GANs [11] aid in generating high quality results but they
are of low diversity and often face mode collapse issues. We have also seen autoregressive models
[12; 13] perform scene synthesis by predicting objects’ information in a sequence, conditioned on
the previous object’s information. However, sequential predictions do not capture the relationships
between objects effectively.

In the last few years, we have seen the emergence and success of denoising probabilistic diffusion
models [14] towards the task of image synthesis [14; 15; 16] and shape generation[17; 18]. Diffusion
models are known to produce high quality results with a higher diversity, while having an easier
training regime compared to other generative models. We have seen graph based diffusion models
being applied for the task of scene synthesis[19]. However this does not consider the set properties
like order of the objects in a scene. Our method generates realistic scenes given text prompts of
objects in any order.

Works on scene synthesis [13; 12; 19] until now, have just focused on synthetic datasets like 3D-
FRONT [20] and SUNCG [21]. Our method is the first work, to the best of our knowledge that
addresses the task of scene synthesis to a real life dataset and also takes into account the properties of
scenes while using diffusion models.

Our work can be summarized as follows:

• we introduce permutation equivariant graph diffusion models which learn to produce diverse
realistic scenes for indoor scene synthesis while respecting the properties of scenes.

• apply the problem of indoor scene synthesis to a real life dataset.

2 Related Work

Traditional Methods: Typically, the conventional approach involves transforming the problem into
a data-driven optimization task. Many methods [3; 4] utilize a graph-based representation of objects
in a scene to extract spatial relationships between them. Prior knowledge of reasonable scenes is
necessary to synthesize plausible 3D scene graphs, with traditional scene priors inferred from interior
design guidelines [1; 2], object frequency distributions [3; 4], affordance maps [5; 6], and scene
arrangement examples [7; 6]. Using the above graph formulation and various optimization methods,
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Figure 3: Denoising UNet Architecture. The denoising network takes in noisy object attributes and
denoises them using edge convolutions with skip connections and attention blocks.

such as iterative or non-linear optimization or manual interaction, a new scene can be sampled while
constrained by scene priors. In contrast to these methods, we adopt a scene graph representation to
learn complex scene composition patterns from datasets, avoiding human-defined constraints and
iterative optimization processes.

Deep Generative Synthesis: With the advent of deep neural networks, we have seen models capable
of learning the distribution of large scale datasets. For the task of scene synthesis, a variety of
generative models have been used from GANs[11], VAEs [10], autoregressive models [12; 13] and
diffusion models [19]. Although GAN methods are known for their fast sampling and production of
high-quality results, they tend to have limited diversity and suffer from poor mode coverage. On the
other hand, VAEs[10] offer better mode coverage but face difficulties in generating accurate samples.
Autoregressive models [12; 13] predict object information in a sequential manner conditioned on the
previous object predictions. However this would limit the capability of the model to learn inter-object
spatial relationships. Works on graph diffusion models such as [19] give out crisp realistic scenes,
however these take text prompts of objects in a certain order, leading to noisy results when the order
is permuted.

Diffusion models: Since it’s inception, diffusion models [14] have been used in a variety of
generative tasks. The most prominent of them are image synthesis [14; 15; 16], text-to-image
synthesis [22; 23] and image inpainting [15]. We have also seen works in the 3D domain focusing on
generating individual objects. However, unlike generating single objects, synthesizing 3D scenes
involves a greater level of complexity in terms of semantics, geometry, and spatial extent. We have
seen DiffuScene[19] which leverages diffusion models to generate object location, category and
orientation. However their method does not consider the order of the text prompts describing the
objects and produces noisy results when the order is changed. Our method produces realistic results
regardless of the order of prompts.

3 Text-DiffScene

We introduce Text-DiffScene, a permutation equivariant scene graph denoising diffusion probablistic
model which aims at learning the distribution of object location, size and orientation.

We consider scenes to be unordered sets of objects. Given a scene S containing atmost N objects
{oi}Ni=1. Each node contains object information such as location, orientation and size. Due to varying
number of objects in different scenes, we pad values of zero denoting empty objects to the scene. We
add an objectness value to each object data denoting if it is actually an object or an ’empty’ object, in
order to make the model robust to zero paddings. To summarize each object {oi}Ni=1 = {li, si, θi, ki}
where l, s, θ, k are the location, size, orientation and objectness of the object respectively.
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3.1 Properties of Scene Graph

We define properties of scene graphs as unordered sets that need to be obeyed by our diffusion model.

• Permutation Equivariance: A function f is said to be equivariant to the action of a group
G if Tg(f(x)) = f(Tg(x)) for all g ∈ G, where Tg is linear permutation related to the group
element g according to []. For example, given a function f and a 3 element set {x1, x2, x3}:

f(x1, x2, x3) = {y1, y2, y3} =⇒ f(x2, x3, x1) = {y2, y3, y1} (1)

This is particularly of importance for text conditioned synthesis since the prompts can be in
any order. Hence the model should be able to produce realistic scenes given any order of the
prompts.

• Invariance to change in object taken as the origin: Since the input text prompts only
describe the location of an object with respect to another object, a relationship between
absolute coordinates and the CLIP processed text embeddings is non-existent. To deal with
this issue, we set the location of the first object in the scene graph as the origin and calculate
the relative position of the other objects with respect to the first object. However changing
the choice of the object taken as the origin results in a completely new data which the
network will not recognize. Hence we require our model to be invariant to origin object
choices.

[
0 0 0

x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

]
̸=

[
0 0 0

x1 − x2 y1 − y2 z1 − z2
x3 − x2 y3 − y2 z3 − z2

]
(2)

where the first matrix is obtained by setting

Using this formulation we define our denoising diffusion probabilistic model.

3.2 Scene Graph Diffusion

We design a denoising probabilistic diffusion model where a series of Gaussian noise corruptions
and denoising on graph nodes perform the transitions between the noisy and the clean scene graph
distributions.

Forward Process Given a fixed 2D tensor RN×D where N objects of the scene, each object’s
location, size, orientation and objectness is concatenated to form a vector of dimension D. Starting
with a clean scene graph x0 from the underlying distribution q(x0), we gradually introduce Gaussian
noise to x0. This results in a sequence of intermediate scene graph variables x1, x2..., xT , which
have the same dimensionality as x0, according to a pre-defined schedule of linearly increasing noise
variance β1, ..., βT (where β1 < ... < βT ). The joint distribution q(x1:T |x0) of the diffusion process
can be expressed as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (3)

where the diffusion step at time t is defined as:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI) (4)

One advantageous characteristic of diffusion processes is that we are able to sample xt directly from
x0 by means of the conditional distribution:

q(xt|xt−1) = N (xt|
√

α̃txt−1, (1− α̃tI) (5)

where xt =
√
α̃tx0 +

√
1− α̃tϵ and αt := 1− βt and α̃t :=

∏t
s=1 αs
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Generative Denoising Process The generative process is a reverse Markov chain that learns to
reverse the Gaussian noise addition. Given a noisy input from a standard multivariate Gaussian
distribution xT ∈ N(0, I) as the initial state, it corrects xt to obtain a less noisier version xt−1 at
each step using a learning Gaussian transition pϕ(xt|xt−1) parameterized by a learnable network
ϕ. Through repetition of this reverse process until the maximum number of steps T, we can reach
the final state x0, the clean scene graph we aim to obtain. Specifically, the joint distribution of the
generative process pϕ(x0:T ) is formulated as:

pϕ(x0:T ) = p(Xt)

T∏
t=1

pϕ(xt|xt−1) (6)

pϕ(xt−1|xt) = N (xt−1|µϕ(xt, t),Σϕ(xt, t)) (7)

where the predicted mean and variance of the Gaussian xt−1, got by feeding xt into the denoising
network ϕ, are µϕ(xt, t) and Σϕ(xt, t).

Using the DDPM paper’s findings [14], we estimate the mean and variance as by learning the noise.

µϕ(xt, t) =
1

√
αt

(xt −
βt√
1− α̃t

ϵϕ(xt, t)) (8)

Denoising Network The denoising network is a UNet [24] that consists of MLPs with skip
connections and attention layers [25], as seen in Fig.3. The attention layers extract the relations
between objects in the scene. We discuss later about the choice of MLPs.

Loss function The loss can be formulated as the KL Divergence between the predicted distribution
and the true distribution.

Ldiff = KL(p(x0:T )|q(x1:T |x0)) (9)
Using the derivations from the DDPM paper, we get :

Ldiff = E[||ϵ− ϵϕ(
√

α̃tx0 +
√

1− α̃tϵ, t)||2] (10)

Text conditioned scene synthesis For text conditioning, we concatenate the text features obtained
by processing the sentences using a pretrained CLIP [26] text encoder to the noise before being input
into the denoising network.

3.3 Dataset

Figure 4: Examples from our dataset after linking Scan2CAD and ScanRefer datasets,

For our experiments, we use a real life dataset derived from ScanRefer [27] and Scan2CAD [28].
ScanRefer is a dataset derived from the ScanNet [29] which provides 51,583 descriptions for 800
ScanNet scenes. For our purpose, we use 5 descriptions for each object in 800 scenes. Scan2CAD
is a dataset where the raw scans from ScanNet are replaced with ShapeNet [30] models aligned
after optimization for 1506 scenes. From the Scan2CAD dataset, we get the object location, size,
orientation and the corresponding mesh. Using instance ID from ScanNet as the link, we merge
these two datasets to get a text-to-mesh-to-box mapping. In total we get 684 scenes each having
5 descriptions for every object. Considering a single set of descriptions for each object in every
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scene, we get 3420 text-scene data points. We randomly shuffle and use 3290 scenes for training
and 130 scenes for validation. We find that every scene from the dataset has atmost 40 objects and
hence set N to 40 and considering object location, size, orientation and objectness, we set D to 8. To
demonstrate the effect of permutation equivariance, we evaluate our models on randomly shuffling
the prompt order of each scene in the validation set.

3.4 Baseline

For our baseline model, we use dynamic edge convolutions [31] as the MLP in the denoising network.
We compare the baseline with diffusion models that use regular 1D convolutions along with attention
and also spatial transformer network(STN) derived from PointNet [32]. The spatial transformer
network learns a 3× 3 align transformation matrix that transforms the object location into canonical
space. We attach this STN to the end of the denoising network.

3.5 Permutation Equivariance

For creating a permutation equivariant diffusion model, we use 1D convolutions with kernel size of 1
as our MLPs. This also reduces the effect of overfitting due to the decrease in parameters. To achieve
permutation equivariance while using edge convolutions we process the nearest neighbour dimension
using 1D convolutions with a kernel size of 1, instead of using max pooling for aggregation as used
in the DGCNN[31] paper.

3.6 Training

We train our diffusion models on the scenes from the training split. They are trained with a batch size
of 16 on a single RTX 3090 GPU for 100,000 epochs. For our model to be invariant to changes in
the choice of object origin discussed above, we randomly permute the objects and the corresponding
text embeddings before it is input into the model. This ensure that our model is not pursuing some
form of neighbour retrieval, and removes overfitting since it keeps learning a new data point at every
iteration. Since, the average number of objects in a scene is 9, this leads to 362880 (9!) permutations
atleast, thereby expanding the dataset drastically. We use a learning rate of 1e−4. For the diffusion
processes, we use the default settings from the denoising diffusion probabilistic models (DDPM),
where the noise intensity is linearly increased from 0.0001 to 0.02 with 1,000 time steps. At test time,
we sample the scene graph from the predicted distribution, following the strategy provided by the
DDPM [14] authors. We retrieve the closest CAD models from the database using the predicted size
of the objects.

3.7 Evaluation Metrics

We use the KL divergence scores derived from the diffusion loss between the predicted and the
ground truth distributions. Previous works use Frechet inception distance (FID) [33], Kernel inception
distance [34] (KID × 0.001) between the top view rendered images of the predicted and the ground
truth scenes. However these works utilize the 3D-FRONT and 3D-FUTURE [20] datasets which
provide textures for objects and room layouts. Since we do not have textures available, our rendered
images become equivalent to binary segmentation masks and hence yield very low FID and KID
scores, which would not be fair to compare. As a result, we use CLIP [26; 35] score which has
been used to evaluate many popular text-to-image diffusion models. CLIP-score measures the cosine
similarity between the text and the image embeddings got from processing the rendered images of
the scenes generated by the diffusion model.

4 Results

From Fig.5, we can see that our diffusion model with MLP and attention layers produces results
with much less collisions than the model with STN in addition. We see that the scenes generated are
diverse, although the semantic logic from the text prompts are mostly respected.

From Table.1, we see that our equivariant diffusion models significantly outperform the normal MLP
+ Attention diffusion model. This is because the normal diffusion model is not invariant to origin
object changes and treats such data as an Out Of Distribution (OOD) data points. This leads to noisy
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(a) Input (b) Reference (c) Ours + STN (d) Ours: MLP + Attention

Figure 5: Qualitative comparison of the methods. Generated samples from the permuted validation
set

Method KL Divergence CLIP-Score[35]

MLP + Attention 0.3582 0.2178
Ours-Equivariant Edge Conv Graph Diffusion 0.1061 0.3615
Ours-Equivariant MLP + Attention 0.0527 0.4046
Ours-Equivariant MLP + Attention + STN 0.0552 0.4044

Table 1: Quantitative Results of the text conditioned scene synthesis.

and meaningless results. Our permutation equivariant model which uses regular 1D convolutions as
MLP along with attention layers achieves the best KL divergence and CLIP scores.

4.1 Ablation Study

Edge Convolutions: Using the equivariant model that leverages edge convolutions as MLP pro-
duces better results than the non-equivariant MLP models, but performs way worse and takes longer
to converge than the equivariant model that uses regular 1D convolutions.
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STN: Using STN in the model is observed to have a negative impact on the generated results. This
results in a lot more collisions between objects.

Equivariant models: Equivariant models converge 10 times faster compared to the non equivariant
counterparts. Overfitting is drastically reduced due to the smaller number of parameters. Invariance
to change in origin objects, however leads to a longer time to converge. From Fig.6, we can observe
that our permutation equivariant models produce realistic scenes even if the order of prompts and the
origin objects are changed, as compared to the noisy results produced by the regular diffusion model.

(a) Reference (b) Normal diffusion model (c) Ours - Equivariant

Figure 6: Visual comparison of the generated results between a regular diffusion model and a
permutation equivariant and an origin object invariant diffusion model.

5 Limitations and Future Work

We observe that even for our best models, object collisions occur frequently. To reduce object col-
lisons, one could train diffusion models with deeper denoising networks. One could also postprocess
the scene by minimizing the IoU between the bounding boxes of colliding objects. Since the strategy
to randomly permute the order of the objects while training leads to a long duration to converge, one
could look at alternative coordinate systems which could lead to origin object invariance, without the
need to randomly permute.

6 Conclusion

In this work, we introduced Text-DiffScene, a novel method for generating 3D scenes conditioned
on natural languages using permutation equivariant denoising diffusion models on scene graphs that
learns the joint distribution of object location, size, orientation and objectness. Having estabilished a
baseline, we compared it’s performance to other variants and inferred that our equivariant models
were vastly superior to regular diffusion models in terms of robustness to change in order of prompts
and the origin object. We believe more advanced diffusion models could yield higher quality of
results and less object collisions and we leave it to future work.
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