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Abstract— High spatial resolution of Magnetic Resonance
images (MRI) provide rich structural details to facilitate ac-
curate diagnosis and quantitative image analysis. However the
long acquisition time of MRI leads to patient discomfort and
possible motion artifacts in the reconstructed image. Single
Image Super-Resolution (SISR) using Convolutional Neural
networks (CNN) is an emerging trend in biomedical imaging
especially Magnetic Resonance (MR) image analysis for image
post processing. An efficient choice of SISR architecture is
required to achieve better quality reconstruction. In addition,
a robust choice of loss function together with the domain in
which these loss functions operate play an important role in
enhancing the fine structural details as well as removing the
blurring effects to form a high resolution image. In this work,
we propose a novel combined loss function consisting of an L1
Charbonnier loss function in the image domain and a wavelet
domain loss function called the Isotropic Undecimated Wavelet
loss (IUW loss) to train the existing Laplacian Pyramid Super-
Resolution CNN. The proposed loss function was evaluated on
three MRI datasets - privately collected Knee MRI dataset
and the publicly available Kirby21 brain and iSeg infant
brain datasets and on benchmark SISR datasets for natural
images. Experimental analysis shows promising results with
better recovery of structure and improvements in qualitative
metrics.

Index Terms— Single Image Super-Resolution, Convolutional
Neural networks, Knee joint, MR Images

I. INTRODUCTION

Magnetic resonance imaging (MRI) has the benefit of
non-invasive acquisition and provides detailed structural in-
formation, benefiting clinical diagnosis. However the high
spatial resolution of MRI comes with the expense of long
scan times, small spatial coverage and low signal-to-noise
ratio [1]. In addition, MR image quality is dependent on
the strength of the magnetic field as well as the scanning
parameters deployed for the anatomy under study. Certain
structures require protocols with extended duration of time
to allow for precise scanning. However, this may also result
in motion artifacts as the subject may not be able to stay
immobile for that period. This may ultimately compromise
image quality leading to difficulty in diagnosis for the
radiologists.

Image quality can be enhanced by several post processing
techniques which are pre-installed with the MR Imaging
software. With the advent of Deep Learning, this process
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can be further enhanced, allowing the radiologist a higher
probability of arriving at a conclusive diagnosis. The concept
of Single Image Super-Resolution (SISR) can be applied ef-
fectively for this purpose. Several deep learning architectures
for SISR have been developed recently [2] for natural images.
The earliest SISR deep learning architecture was the Super-
Resolution Convolutional Neural Network (SRCNN) [3] by
Dong et al. which has surpassed the bicubic baseline and
outperformed the sparse coding based methods. Ledig et al
[4] proposed the Super-Resolution Generative Adversarial
Network (SRGAN) which uses a perceptual loss function
consisting of an adversarial loss and a content loss to
yield better perceptual image quality. The Laplacian Pyramid
Super Resolution Network (LapSRN) [5] introduced by Lai
et al., is based on Laplacian Pyramid which progressively
reconstructs the residuals of higher resolution images at each
level of the pyramid. The LapSRN network uses the L1
Charbonnier loss which shows a significant improvement
over the Mean squared error (MSE) Loss.

Some of the recent works on CNN based MRI super-
resolution include the 3D SRCNN [6] for knee images, GAN
for brain images [7] and CNN with wide residual network
with fixed skip connection [8]. All the above methods
have extensive feature extraction stages but the choice of
loss function have made the overall output suffer from an
undesirable blur. SISR methods that retain a pre-existing
network as the base network and modify the loss functions to
emphasize on improving edges and textures exist in the lit-
erature. Pandey et al [9] proposed the loss function based on
mean square canny edge to facilitate sharper reconstruction
and applied it in SRCNN and the Efficient Sub-pixel CNN
(ESPCN). George et al [10] and Yong Guo et al [11] used
an image edge based loss component to preserve both low-
frequency content and high-frequency structure of images.

In our work, we emphasize that, in addition to minimizing
in spatial domain, the loss in the sub-band domain of the
predicted HR image with respect to the ground truth must
also be minimized. Wavelet transform is a good operator
for signal analysis in the sub-band domain. The wavelet
transform coefficients ensure a more precise and sparse
description of local features and separation of signal char-
acteristics. These characteristics include the coarse and fine
details of the image which are of main interest to us. We
have formulated our loss function based on wavelet transform
which can be used to extract high-frequency details and
combined with the pre-existing loss function in the spatial
domain. Huang et al. proposed WaveletSRNet [12], a super-



Fig. 1. Red arrows indicate convolutional layers. Blue arrows indicate
transposed convolutions (upsampling), and green arrows denote element-
wise addition operators.

resolution network for face images using a decimated wavelet
transform based loss function. In our work, we use the
Isotropic Undecimated Wavelet (IUW) transform [13] in
our loss function for MRI super-resolution. The benefits
of IUW transform are: 1) By eliminating the decimation
step, the undecimated wavelet transform overcomes the lack
of translation-invariance of the discrete wavelet transform
(DWT). In pattern recognition, it is important to construct
signal representations that are translation invariant. When a
pattern is translated, its representation should be translated
not modified. Translation-invariance is also a key feature
of convolution layers of CNNs. 2) It can better enhance
the structures of isotropic regions which are common in
images. 3) The filters of IUW can help in removal of ringing
artifacts, a common problem with MRI images. Combining
these advantages, we summarize our contributions as follows:
• We propose a novel combined loss function consisting

of L1 Charbonnier loss function in image domain and
a wavelet domain loss function called the Isotropic
Undecimated Wavelet loss for a pre-existing super-
resolution CNN, the LapSRN, for better performance.

• We have made a collection of a large entity of real life
Knee MRI data and applied image pre-processing to
curate the data.

• We have made an extensive comparative study of the
bicubic baseline, LapSRN with L1 Charbonnier loss
and LapSRN with L1 Charbonnier + IUW loss. Results
show quantitative improvements with better recovery
of structures for knee, brain and benchmark vision
datasets.

II. METHODOLOGY

A. LapSRN Architecture

The 2x super-resolution network of the LapSRN [5] is
our base network. The low-resolution (LR) image is taken
as input using which the model predicts residual images at
2x scale factor (Fig. 1). The model has two branches, namely
feature extraction and image reconstruction.

Feature extraction : The feature extraction branch con-
sists of n convolutional layers and one transposed convolu-
tional layer to upsample the extracted features by a scale
of 2. The output of each transposed convolutional layer

is connected to a convolutional layer for reconstructing a
residual image.

Image reconstruction: The input image is upsampled by
a scale of 2 using a transposed convolutional layer. The layer
is initialized with a bilinear kernel. A high-resolution output
image is then obtained by combining the upsampled image
and the predicted residual image from the feature extraction
branch.

B. Loss function

1) L1 Charbonnier Loss: The L1 Charbonnier Loss used
in LapSRN has shown to perform better than the MSE which
fails to capture the underlying multi-modal distributions of
HR patches resulting in over-smoothed reconstructed HR
images which are inconsistent to human visual perception
on natural images.
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where, ρ(x) =
√

x2 + ε2 is the Charbonnier penalty func-
tion, N is the number of training samples in each batch, and
L is the number of levels in our pyramid. We assign a value
of 1e-3 to ε .

2) Isotropic Undecimated Wavelet Loss: We propose the
Isotropic Undecimated Wavelet loss which is applied to the
reconstructed output of LapSRN. The IUW transform uses
three directional analysis (horizontal, vertical and diagonal)
filters to design the filter banks. The IUWT filter at level 1
is defined as:-

f1 = gi, j ∗gi, j

f2 = gi, j ∗hi, j

f3 = hi, j ∗gi, j

f4 = hi, j ∗hi, j

(2)

Where h=[1,4,6,4,1]/16 and g=[-1,-4,10,-4,-1]/16 for the first
level. Each of the above equation generates a 5×5 filter. We
stack them to create a 4 channel filter of dimension 5×5×4.
f1, f2, f3, f4 represent the channels of the filter. Let this filter
be f.

IUW transform is defined as the convolutional operation
between the image and the filter (f) mentioned above. This
filter can seamlessly fit into a convolutional layer since it
uses the convolution operation to find the IUW transform.

Ŷr
(l)

= Ŷ (l)* f

Y (l)
r = Y (l)* f

(3)

where Ŷ (l) is the predicted image at level l of the pyramid
and Y (l) is the ground truth. Ŷ (l)

r and Yr represent the IUWT
sub-bands of the predicted and the ground truth images



respectively. We define the IUW loss as:
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where t= L,H and k=L,H and N is the number of training
examples. LL, LH, HL, HH are defined as the sub bands
obtained from the channels of Yr and Ŷr. This loss is then
combined with the L1 Charbonnier loss in the image domain
by the following equation:-

Loss = L(ŷ,y;θ)+α ∗LossIUWT (5)

where L(ŷ,y;θ) is the L1 Charbonnier Loss and α is the
weight variable used to balance both the losses. The network
yields best results for α set to 0.05 and the number of levels
L is set to 1.

III. DATASET DESCRIPTION AND EVALUATION METRICS

A. MRI data

We have used three MRI datasets - MRI Knee dataset
collected from hospital and two publicly available brain
datasets and benchmark SISR datasets of natural images.

Anonymized MRI knee scans of 10 subjects with intra-
articular pathologies taken from a department library are
used. Ethical waiver for this data is appropriately procured
from the Institutional review board as per the requirements of
the Helsinki declaration (1975). In this dataset, 8000 DICOM
images are used for training, 800 for validation and 4000 for
testing and comparing the results.

The iSeg Infant MR image database is originally used to
evaluate the segmentation algorithms for the brain structures
of 6-month infants [14]. There are 23 T1-weighted volumes
of size 144×192×256, of which 1600 images of 16 volumes
are used for training and 700 images of 7 volumes for testing.

Kirby21 dataset [15] with human brain data consists of
5460 slices of size 256×256 taken from 42 T1-weighted
MPRAGE volumes out of which, 3770 slices from 29 vol-
umes are used for training and 1690 slices from 13 volumes
for validation.

Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) [16] metrics are used to evaluate the
super-resolved image quality.

B. Dataset Creation

The image patches of size 256×256 are created on each
slice of the dicom files using a window. These patches are
used as the ground truth and resized to 128×128 for the
creation of input images low resolution LR images to train
the networks. Linear Normalization is then applied to both
the input and the ground truth images.

TABLE I
COMPARATIVE STUDY ON BENCHMARK SR VISION DATASETS

Method \Dataset Set14 BSDS100 Urban100 Manga109

Bicubic 30.34/
0.8705

29.55/
0.8471

26.87/
0.8407

30.78/
0.9313

LapSRN L1 33.21/
0.8801

31.84/
0.8698

30.84/
0.8723

37.51/
0.9473

LapSRN L1 +
IUWL

33.35/
0.8813

31.92/
0.8708

31.08/
0.8751

37.65/
0.9478

TABLE II
COMPARATIVE STUDY FOR MRI DATASETS

Method \Dataset Knee Kirby21 iSeg
Bicubic 41.38 / 0.9831 31.65 / 0.9554 31.60 / 0.9718
LapSRN L1 44.94 / 0.9887 34.22 / 0.9745 32.85 / 0.9785
LapSRN
L1 + IUWL 45.10 / 0.9887 34.24 / 0.9747 33.13 / 0.9797

SRCNN L1 44.63 / 0.9882 33.53 / 0.9706 32.93 / 0.9789
SRCNN
L1 + IUWL 44.64 / 0.9883 33.55 / 0.9708 33.21 / 0.9799

IV. RESULTS AND DISCUSSION

Our initial experiments are conducted experiments on the
standard DIV2K dataset with 800 RGB color images as
the training set. For testing, the benchmark super-resolution
datasets - Set14, BSDS100, Urban100 and Manga109 (Table
I) are used. Results show consistent improvements over the
bicubic and the LapSRN L1 baselines both visually and
quantitatively.

In the MRI data experiments, we have compared Lap-
SRN with L1 Charbonnier loss and the combination of L1
Charbonnier and IUW loss to understand the contribution
of IUW loss in the loss combination. In Table II, we have
presented the PSNR and SSIM metrics. From the table,
it can be seen that LapSRN - L1 + IUW loss performs
significantly better than the baseline bicubic. Furthermore,
comparing between LapSRN - L1 and LapSRN - L1 + IUW,
it can be observed that for all the datasets, the improvement
in PSNR is appreciable. But, when considering SSIM, the
following things can be observed: 1) LapSRN - L1 + IUW
provides equivalent results to LapSRN - L1 for Knee 2)
LapSRN - L1 + IUW provides minor improvement compared
to LapSRN - L1 for Kirby and 3) LapSRN - L1 + IUW
provides appreciable improvement compared to LapSRN -
L1 for ISeg. This behaviour can be attributed to the structures
and resolution of the considered dataset. Knee and Kirby21
are high resolution datasets with better structures while the
structures in ISeg dataset are weak and difficult to recover.
Significant improvement in SSIM for iSeg dataset shows that
our proposed loss IUW does help in recovering structures.
Similar analysis is done on the classical SRCNN to show the
consistency of the proposed approach over baseline methods.

Qualitative comparison of LapSRN - L1 and LapSRN - L1
+ IUW for natural images (Fig. 2 and 3) for MRI images (Fig
4, 5 and 6) are shown. The figures show that LapSRN - L1 +
IUWL provides better recovery of structures as compared to
LapSRN - L1. For natural images, the figures show reduction
in the aliasing artifacts of fine structures for the challenging



Fig. 2. Visual results for Urban100 image92, from left: Bicubic interpo-
lation, LapSRN L1 and and ours (LapSRN L1 + IUWL)

Fig. 3. Visual results for Urban100 image76, from left: Bicubic interpo-
lation, LapSRN L1 and and ours

Fig. 4. Visual Comparison of bicubic interpolation, LapSRN and ours for
Knee dataset. Red arrow mark indicates improper recovery of details

Urban100 images. Further, the PSNR values reported for the
particular set of slices shows that the LapSRN - L1 + IUWL
works effectively for ISeg, Kirby and Knee.

V. CONCLUSION

We propose the novel Isotropic Undecimated Wavelet
loss to improve the quality of super-resolved images by
seamlessly integrating the IUWT in the convolutional layer
of the LapSRN architecture. We have evaluated our proposed
method on Knee and brain datasets. We observe that the
recovery of structures were much better than the bicubic
baseline and relatively better than LapSRN. As a future work,
we would like to explore the performance of the proposed
loss function in other architectures.
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