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Abstract

3D semantic scene understanding is a challenging prob-
lem as one needs to focus on both scene understanding and
object reconstruction. Given a single RGB image as input,
the task would be to predict the room layout, reconstruct the
3D meshes of objects and predict semantics for the same.
Consequently, combining these tasks in the 3D space can
become computationally expensive very fast. We propose
a novel non-learnable Shearing Layer, that can convert 2D
feature maps to 3D feature maps in a computationally ef-
ficient manner, without the need for backprojection using
depth information. Using Mesh R-CNN [4] as a baseline,
we show that replacing the voxel head with our sheared de-
coder yields smoother and more accurate meshes.

1. Introduction
Over the last decade, we have seen big jumps in perfor-

mance of neural networks in several 2D vision tasks such
as object detection using bounding boxes, semantic and in-
stance segmentation using masks. However the real world is
three dimensional (3D) in nature and would need scene un-
derstanding to accurately represent the objects in this space.

We have seen works that have shown reasonable suc-
cess in solving this problem. [3, 4, 13]. These papers pro-
pose networks that take RGB images as input, learn and ex-
tract important features using 2D convolutional neural net-
works [7,9,10,14], backproject the images into voxel space
and perform mesh refinement. The Total 3D Understanding
paper [13] goes a step further to reconstruct the room lay-
out, camera pose with bounding boxes, poses and meshes.
Similarly, Dahnert et al. [3] proposed a method to unify the
tasks of geometric reconstruction, 3D semantic segmenta-
tion, and 3D instance segmentation.

However, a crucial problem that could be noted from
these papers [3,13] is the computational complexity of com-
puting the inverse of the intrinsics matrix on the fly to back-
project the 2D images into voxel space. We note that this
operation significantly increases the training and inference
time.

Figure 1. Left: Input Image, Right: Our predicted 3D mesh with
semantics

Gkioxari et al. [4] uses a 2D convolutional layer where
the number of feature maps are set to the number of rows
thereby creating a single 3D map. However 2D convolu-
tional layers may not be great at learning 3D feature maps
due to the complex nature of the same. We note that a 3D
decoder similar to the ones used in [3] are more accurate in
reconstructing the objects better.

To alleviate these problems to a certain extent, we pro-
pose the Shearing layer. Our contributions can be summa-
rized as follows : -

• We propose a novel non-learnable Shearing Layer
which converts 2D feature maps directly into 3D fea-
ture maps.

• We show that our ”sheared” decoder can learn to re-
construct meshes which are smoother and more accu-
rate compared to the 2D decoder used by Gkioxari et
al. [4]

• We also extend the MeshRCNN [4] codebase to allow
for semantic reconstruction of meshes (as seen in 1)
rather than just class agnostic ones.

2. Baseline - MeshRCNN
2.1. Voxel Branch

MeshRCNN [4] extends the architecture of MaskRCNN
[6] by adding a voxel branch. The voxel branch consists



of a decoder which uses 2D convolutional and transposed
convolutional layers. The feature maps obtained from the
ROIAlign layer of the MaskRCNN is taken as input for the
decoder. The output of the layer is a single 3D feature map.

A process called cubify is used to replace each occupied
voxel from the voxel occupancy grid into a triangle mesh
using a threshold, in an efficient manner. The output is a
watertight mesh whose topology depends on the voxel pre-
dictions.

2.2. Voxel Loss

Binary cross entropy loss between the predicted voxel
occupancies and the ground truth voxel occupancies is min-
imized by training the voxel branch.

2.3. Mesh Refinement

The coarse mesh obtained from the voxel branch is fur-
ther refined through a series of mesh refinement stages.
First, the vertex alignment operation projects each vertex of
the coarse mesh onto the image plane, which generates an
initial image aligned feature vector. A series of graph con-
volutions [8] operating over the edges then adjust the vertex
positions of the initial mesh. The vertex refinement stage
predicts the offsets for each of the vertices which updates
the mesh geometry while keeping the topology fixed. The
vertex refinement output is further refined then by the next
mesh refinement stages.

2.4. Mesh Losses

MeshRCNN samples point-clouds P gt and P i from the
ground truth mesh and the generated mesh respectively and
defines the mesh loss of the i-th mesh refinement stage as
the weighted average of the chamfer loss Lcham(P i, P gt),
the (absolute) normal loss Lnorm(P i, P gt), and the edge
loss Ledge(V

i, Ei).
Chamfer distance:

Lcham(P,Q) = |P |−1Σ(p,q)∈ΛP,Q
||p− q||2

+|Q|−1Σ(q,p)∈ΛQ,P
||q − p||2

(1)

(Absolute) Normal Distance:

Lnorm(P,Q) = −|P |−1Σ(p,q)∈ΛP,Q
|up · uq|

−|Q|−1Σ(q,p)∈ΛQ,P
|uq · up|

(2)

Edge Loss:

Ledge(V,E) =
1

|E|
Σ(v,v′)∈E ||v − v′||2 (3)

where E ⊆ V × V are the edges of the predicted mesh.
The mesh refinement branch is trained to minimise the

mean of the chamfer loss, the normal loss, and the edge loss
between the ground truth mesh and the predicted mesh.

Figure 2. Left: Input Image, Right: 3D map of Sheared image

3. Our Method

3.1. Shearing Layer

We propose to create a non-learnable layer that would
push each row of the previous layers feature maps into a
separate channel while blacking out other pixels of the same
channel, such that each row of the feature map is in a differ-
ent channel. The output of the shearing layer is a diagonal-
ized image in the 3D space (as seen in 2) .This would then
be used as the input for the 3D convolution [16].

Figure 3. Architecture of the Sheared Decoder



3.2. Sheared Decoder

The sheared decoder consists of the Shearing layer fol-
lowed by the 3D analogous of the 2D decoder used in the
baseline as seen in 3. The final layer of the decoder is a
3D convolutional layer with number of classes as channels,
thereby predicting a voxel occupancy grid for each detec-
tion and for each class. The sheared decoder is used to
replace the voxel branch of the MeshRCNN. The sheared
decoder is trained to minimize the same loss as proposed in
the voxel branch of MeshRCNN.

4. Experiments

4.1. Training

We trained the baseline MeshRCNN and our proposed
network on the Pix3D [15] dataset which consists of 10,069
images and 395 unique 3D models. We randomly split the
data into a training set that consists of 7539 images and a
test set consisting of 2530 images.

Figure 4. Top: Training loss curve for MeshRCNN, Bottom:
Training loss curve for our network

The two networks were trained on a single NVIDIA RTX
3090 GPU. We used stochastic gradient descent with mo-
mentum as the optimizer for this problem. After linearly
increasing the learning rate from 4 × 10-4 to 4 × 10-3 over
the first 1000 iterations, we then decay it by a factor of 10

Table 1. Comparison of average APbox, APmask, and APmesh

Architecture APbox APmask APmesh

MeshRCNN 0.938 0.881 0.420
MeshRCNN + Shear (Ours) 0.935 0.875 0.455

Table 2. Comparison of per category APbox, APmask, and APmesh

Category MeshRCNN Ours
Bed 0.449 0.383
Bookcase 0.560 0.607
Chair 0.380 0.429
Desk 0.368 0.378
Misc 0.1625 0.136
Sofa 0.716 0.676
Table 0.546 0.551
Tool 0.116 0.306
Wardrobe 0.484 0.621

at 8000 and 36,000 iterations. The model is trained for a
total of 40,000 iterations. Due to the memory limitations of
a single GPU, we were restricted to a batch size of 4. The
training curves for the baseline MeshRCNN and our pro-
posed method can be seen in 4. We note that the gradients
were more stable during the training of our network when
compared to the baseline.

4.2. Evaluation

We reuse the metrics that are used for evaluation in the
MeshRCNN [4] paper viz. APbox, APmask, and APmesh.
The first two are standard metrics used for object detec-
tion and segmentation challenges [11] at intersection-over-
union (IoU) 0.5 respectively. APmesh is defined as the mean
area under the precision-recall curves for each category at
F10.3 > 0.5. As Pix3D is not exhaustively annotated, the
model may be penalised for correct predictions that corre-
spond to non-annotated objects. To prevent this, APmesh is
only calculated for predictions with box IoU > 0.3. The av-
erage APbox, APmask, and APmesh are given in Table 1 while
the per-category comparison can be seen in Table 2.

We note that the APmesh of MeshRCNN with the Shear-
ing Layer is higher than that of the baseline MeshRCNN.
The proposed method also outperforms the baseline
MeshRCNN in most of the per-category APmesh, some by
a significant margin.

4.3. Qualitative Comparison

Fig 5 shows us the comparison of the predictions made
by both MeshRCNN and our network, given an input im-
age. It can be clearly seen that the meshes generated by
our network are smoother and more accurate. We can also
see from Fig 5 that our model is able to discriminate bet-



Input MeshRCNN Ours

Figure 5. Qualitative comparison of reconstructed scenes by
MeshRCNN and our method. From top to bottom: Sofa Scene,
Chairs, Pan, Wardrobe and Bookcase, Beds, Previously Unseen
Image [1]

ter between the semantics of different objects placed on top
of each other compared to MeshRCNN. Our model is also
able to yield a better geometry for difficult objects (such
as Tools) in overall and more complete meshes. We can
see that the overall APmesh score of the predictions is better
compared to the baseline as seen from Table 1.

From Table 2, we observe that the baseline architec-
ture beats our model in three classes by a small mar-
gin in APmesh. However our model yields a significantly
higher APmesh in rest of the classes, sometimes almost
thrice the APmesh of baseline metrics. This demonstrates
the model’s superior generalization capability compared to
baseline MeshRCNN.

5. Limitations

As MeshRCNN does not use backprojection to project
the 2D image to the 3D domain, we weren’t able to experi-
mentally demonstrate the computational efficiency of using
the shearing layer. From preliminary testing, we see a 35x

performance boost when we replace backprojection opera-
tion with the shearing layer. We also note that MeshRCNN
does not predict the actual depth location of the objects cen-
tre. This creates scenes which may be inaccurate in the lo-
cation of the objects with respect to each other leading to
cluttered reconstructions.

6. Conclusion and Future Work
We observe that our model is able to learn more dis-

criminative feature maps in the voxel space. This can be
attributed to the sheared decoder, which uses 3D convolu-
tions [16] as compared to the 2D convolutions used in the
baseline. The shearing layer allows the voxel head to learn
higher dimensional features that can reconstruct the scene
in a more realistic sense.

Through the usage of the shearing layer, we are able to
use learned 2D features maps in a 3D space. Therefore, in-
formation can be propagated from a 2D encoder into a 3D
decoder and hence one could use sheared feature maps ob-
tained from pretrained weights of popular encoders as input
for the 3D decoder. As a result, one could look into devel-
oping GANs with 2D encoders and 3D decoders which will
be a huge performance boosts compared to fully 3D GANs
and V-Net. [2, 5, 12]

The MeshRCNN codebase makes class agnostic predic-
tions. We modified the code to use the class labels while
making the predictions and to generate meshes that contain
semantic information in them directly. This removes the
need for postprocessing in order to predict a semantic scene
from the input RGB image.

We would like to explore the efficiency of the shearing
layer by replacing the 2D-3D backprojection layer in the
architecture proposed by Dahnert et al [3]. However, further
research is required into the placement of the instances into
the 3D grid after applying the shearing layer. Future work
could also explore capturing better context between objects
in a scene by adding attention in the form of transformers in
the vertex alignment layers.
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