
Shape, Light and Neural Material Decomposition using Monte-Carlo Rendering
and Diffusion Denoising

Ananth Kalyanasundaram Simeng Li Soumya Mondal Surya Prabhakaran Jonathan Schmidt
Technical University of Munich

Abstract

Differentiable rendering has made significant progress
lately, allowing for the creation of high-quality 3D scene
reconstructions from multiple images. One of the lead-
ing methods in differentiable rendering is NVDIFFRECMC
[24], which employs a physically-based shading model that
integrates ray tracing and Monte Carlo methods to achieve
superior decomposition. However, this algorithm is limited
by its reliance on a subset of available data and primitive
bilateral filtering. We implemented a neural BRDF and de-
noising to improve simultaneously reconstructing geometry
(in explicit triangle meshes), materials, and lighting. This
results in substantial improvements in material and light
separation over previous methods. We believe that incor-
porating neural denoising techniques and augmenting the
training data can further enhance the quality of the inverse
rendering pipeline.

1. Introduction
Differentiable rendering techniques have shown great

potential for achieving accurate 3D reconstruction from
multiple image observations. Various methods have been
developed for this purpose, including NeRF [39] which uses
differentiable volume rendering to create high-quality view
interpolation through neural, density-based light fields.
Other surface-based methods rely on signed distance [45,
47] or triangle meshes [43, 55] to capture high-quality ge-
ometry. More recent [5, 43, 65] work has further decom-
posed these representations into geometry, material, and en-
vironment light.

Despite the impressive results achieved by these meth-
ods, most rely on appearance baked into neural light fields
or apply simple shading models that do not account for
shadows or indirect illumination [5, 64]. While some meth-
ods do consider shadowing and indirect illumination, the
deviations from physically-based shading models make it
difficult for these methods to plausibly disentangle shape,
material, and lighting.

While it is theoretically straightforward to replace the

rendering engines of these 3D reconstruction methods with
more photorealistic differentiable renderers [31, 36, 46] and
optimize in a setting with more accurate light simulation,
including global illumination effects, in practice, this poses
a challenge. The noise in multi-bounce Monte Carlo ren-
dering makes gradient-based optimization challenging, re-
quiring very high sample counts which result in intractable
iteration times.

Our work addresses the gap between existing multi-
view 3D reconstruction methods and physically-based dif-
ferentiable rendering, providing high-quality reconstruc-
tions with competitive runtime performance. We use a Neu-
ral BRDF model for material representation. To enhance
visual fidelity, we employ Monte-Carlo integration with ray
tracing to compute indirect illumination and use a genera-
tive model for denoising.

Our key contributions are:

• A modular framework for inverse rendering.

• A neural BRDF with a prior from material databases.

• A diffusion model for differentiable image denoising.

2. Related Work
2.1. Neural Reconstruction

Neural methods for multi-view reconstruction can be
broadly classified into two groups based on the type of
scene representation used: implicit and explicit. The im-
plicit methods, such as NeRF [39] and its follow-up meth-
ods [16, 37, 40, 44, 49, 50, 59, 60, 62, 64], utilize volumetric
representations and compute radiance by volumetric render-
ing of a 5D light field that is encoded in a neural network.
Although these methods have shown remarkable success in
novel view synthesis, they suffer from geometric quality
limitations due to the ambiguity of volume rendering [64].

In contrast, surface-based rendering methods [45,47,57,
61]directly optimize the underlying surface using implicit
differentiation or gradually morph from a volumetric repre-
sentation into a surface representation. These methods aim
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Figure 1. Overview of our contributions: We extend the nvdiffrecmc [24] pipeline with a neural material model and a diffusion-based
denoiser.

to overcome the limitations of volume rendering and im-
prove the quality of the rendered surfaces. Implicit repre-
sentations, such as DeepSDF, and explicit representations,
such as 3D meshes, are used in these methods. While
explicit representation methods produce high-quality geo-
metric results, they require more computational resources
compared to implicit representations. Most of these meth-
ods assume a given mesh topology [10, 11, 35], although
recent work in this area includes topology optimization
[3, 15, 34, 55].

2.2. Material and Lighting Estimation

Estimating surface radiometric properties from images
have relied on various methods, including special view-
ing configurations, lighting patterns, and complex captur-
ing setups [17, 18, 20, 30]. Some recent approaches have
utilized neural networks to predict the Bidirectional Radi-
ance Distribution Function (BRDF) directly from images
[14,21,32,33], while others have used differentiable render-
ing methods [10, 35] to predict geometry, Spatially-varying
BRDF, and lighting via photometric loss.

Some methods represent illumination using mixtures of
spherical Gaussians [5, 43, 63, 66], pre-filtered approxima-
tions [6, 43], or low-resolution environment maps. Addi-
tionally, some methods account for the shadowing term,
which requires a split optimization approach with geome-
try locked before the shadow term is sampled. Other ap-
proaches use neural networks [58, 66] to represent indirect
illumination.

2.3. Denoising

Denoisers play a crucial role in real-time and pro-
duction renderers. Cross-bilateral filters have tradition-

ally been used [67], but require manual tuning for each
scene. In recent years, neural denoisers [2, 9, 26] trained on
large datasets have demonstrated impressive quality with-
out manual adjustments and are now widely used in pro-
duction renderers. Our approach incorporates differentiable
versions of these denoisers directly into our pipeline. We
believe that differentiable denoisers have great potential in
physically-based inverse rendering in the future.

3. System Overview
In this work, we aim to tackle the complex problem of

optimizing the shape, material, and environment lighting of
an object using physically-based rendering. Our approach
involves utilizing a set of multi-view images that come with
known foreground segmentation masks and camera poses.
Our ultimate objective is to enhance the intrinsic decom-
position of lighting and materials, which will result in as-
sets that can be utilized for various purposes such as re-
lighting, editing, animation, or simulation. To demonstrate
the effectiveness of our approach, we build upon the recent
method NVDIFFREMC [23], which is designed to solve
the same optimization task of shape, materials, and envi-
ronment lighting.

Our system is summarized in Figure 1. The optimiza-
tion of a triangular mesh with arbitrary topology from a set
of images is achieved through 2D supervision. To repre-
sent geometry, a signed distance field is defined on a three-
dimensional grid and then reduced to a triangular surface
mesh using deep marching tetrahedra (DMTet) [55].Next,
the extracted surface mesh is rendered in a differentiable
renderer. In contrast to the NVDIFFRECMC, which em-
ploys a physically-based (PBR) material model from Dis-
ney [7] that merges a diffuse term with an isotropic, spec-

2



Normalizing Flow BRDF [10]

21
[10] Chen et al. "Invertible Neural BRDF for Object Inverse Rendering” [ECCV 2020]
[11] Rezende et al. "Variational inference with normalizing flows.” [PLMR 2015]
[12] Müller et al. "Neural importance sampling.” [TOG 2019]

ü Allows BRDF queries and importance sampling by inverting the flow

𝒰 0, 1 !𝑝(𝜃", 𝜃#, 𝜙#)

NICE [11] with piecewise-quadratic coupling layers [12](a) iBRDF [12]Reparametrized Normalizing Flow

22

{𝝎!, 𝒛"#$% }

𝑝(𝝎&) 𝒰 0, 1 '

(b) Ours

Figure 2. Comparison of Normalizing Flow architectures for rep-
resenting BRDFs.

ular GGX lobe [56], we leverage a Neural BRDF model,
pre-trained on MERL and EPFL dataset, as elaborated in the
section 5. Finally, the rendered image is evaluated against
a reference image using a photometric loss. We utilize
the same renderer as NVDIFFRECMC, which employs ray
tracing and Monte Carlo integration to compute the direct
lighting integral. The scene lighting is represented using a
high dynamic range light probe stored as a floating point
texture with a resolution of 256×256 texels. To mitigate the
inherent variance of Monte Carlo integration, we employ a
diffusion model-based denoising technique, as described in
section 6.

In addition, unlike NVDIFFRECMC which was imple-
mented using Pytorch, we developed our complete inverse
rendering pipeline using Pytorch Lightning. This allowed
for faster development with pre-built modules, reducing
boilerplate code and improving readability. We were able
to integrate the material, geometry and lighting modules ef-
ficiently in our pipeline.

4. Material Databases

Introducing new BRDF datasets is considered a promis-
ing way of training on more kinds of materials and capture
more complicated material properties. The MERL dataset
contains 100 isotropic materials [38].

The UTIA and EPFL dataset have high enough resolu-
tion for synthesis [13]. The EPFL dataset is created by
the Realistic Graphics Lab (RGL) in EPFL. The UTIA is
a dataset containing 150 anisotropic materials [22], and the

EPFL dataset contains 51 isotropic and 11 anisotropic ma-
terials (until February, 2023) [13].

The UTIA database is investigated, but as the project is
focusing on isotropic materials, it is finally decided to focus
on the isotropic parts of the EPFL dataset. EPFL dataset
also has some advantages over the previous datasets by ap-
plying the new adaptive parameterization method. MERL
and UTIA datasets convert RGB to spectra using the heuris-
tic formula, and MERL has measurement artifacts such as
the optical aberrations, the discontinuities and artifacts at
smaller than 75 degrees [13].

4.1. EPFL Dataset

EPFL datasets reaches better compression compared to
MERL by applying the adaptive parameterization, which
is based on each material’s BRDF properties. Rough ma-
terials, which has more diffuse effects, has a wider BRDF
lobe, while shiny materials have more concentrated lobes as
in Figure 3. The region including the lobe and surrounded
region is the area of high interest in BRDF measurement.
Adaptive parameterization automatically samples the high-
interest area by applying monte-carlo importance sampling
and several parameterization warps [13]. The monte-carlo
sampling and resulting parameterization forms duality [13].

(a) Diffuse (b) Specular

Figure 3. Diffuse and Specular Material lobes and sampling. Fig-
ure from [13].

There are three main phases of the whole BRDF mea-
surement process as in Figure 12. Acquisition, Sampling
and Evaluation [13]. In acquisition, there are 2 steps: first
step is to acquire the retro-reflective responses, which is
used to determine the material’s BRDF properties. After
the individual properties are determined, the spectrometer
is then used to acquire the parametric BRDF. During acqui-
sition and sampling, 4 warps are applied. Thus the inverse
of the warps are applied in the evaluation phase to deter-
mine the BRDF values corresponding to the incident and
outgoing angles [13].

4.2. BRDF Format Conversion

The main structure of conversion from EPFL format to
MERL format is based on the C++ implementation of eval-
uation phase of EPFL dataset. There are two types of eval-
uations functions, the RGB and spectro evaluations. The
RGB one will take the incident and outgoing angles and
evaluate the RGB results, while the spectro version output
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the results for different wavelengths [13]. We only use the
RGB component. based on different It provides an evalua-
tion method from powiteq rgb.cpp that evaluates the corre-
sponding RGB values from the data files based on the given
lighting and viewing direction [13].

4.3. Comparisions of Different Parameterizations

This adaptive parameterization has several advantages
over traditional methods. The traditional methods are
mostly built around the half angle, such as the Rusinki-
wiscz coordinates [13, 53]. They only have high sampling
rates on high-frequency materials. The MERL dataset only
contains specific set of materials and has high dimensional-
ity, including the incident direction, outgoing direction and
normal. The high dimensionality makes the measurement
expensive to operate. However, the adaptive parameteriza-
tions is measured based on each material’s individual prop-
erties, and the measurement is restricted to only 2D [13],
which makes the process tractable.

We also need to transform the coordinate system, since
MERL uses the Rusinkiwiscz Coordinates, while the evalu-
ation procedure of the EPFL dataset uses standard direction
vectors (ωi, ωo) [13, 53]. The conversion is based on the
utility function from Nerfactor project [65].

4.4. Pre-training Results

For the pretraining procedure, the training dataset is the
combination of MERL and EPFL dataset, and the valida-
tion dataset is the MERL dataset. Compared to the case of
using the single MERL dataset, the validation result of com-
bination of two datasets has a good convergence but slightly
worse results than the result of using single MERL as in Fig-
ure 13. This has several reasons. The combination of two
datasets leads to a more complicated feature space, which
can cause the convergence on MERL to be slightly worse.
Another reason can be due to the loss of precision during
the conversion between MERL and EPFL as in figure. The
rendered cube of converted EPFL dataset has some artifacts
as in Figure 4. As EPFL dataset used importance sampling,
the uniformly sampled 180 ∗ 90 ∗ 90 angles can also lead to
worse precision.

(a) EPFL Ceilling Gray Paint (b) MERL Orange Paint

Figure 4. Comparison of 2 rendered spheres in MERL format

4.5. Section Summary

As a result, there are some potential future works. To
better utilize the power of adaptive parameterization, the
new training and validation methods are important. It would
also be an interesting topic to include anisotropic materials.
To capture the more complicated materials, which means
more complex feature space, new networks are left to be
constructed.

5. Neural BRDF

5.1. Preliminaries

The spatially-varying BRDF is a 7-dimensional function,
which maps incident light direction ωi, outgoing light di-
rection ωo and the surface location x ∈ R3 to an RGB re-
flectance value r ∈ R3. It can be interpreted as the fraction
of light coming from ωi that gets reflected to ωo at postion
x. Following [65], we decompose the BRDF into a diffuse
and a specular component, where the diffuse part only de-
pends on the surface location x. Thus, our BRDF can be
written as:

fr(ωi, ωo, x) = a(x) + fs(ωi, ωo, x) (1)

where a(x) refers to the diffuse color and fs(·) deter-
mines the specular reflection. For simplicity, we assume the
diffuse and specular color to be identical, which allows us to
model fs independently from any color. For the remainder
of this section, we focus on modeling the specular reflection
function.

Explicit BRDF models like [8] can be used for inverse
rendering by optimizing its parameters until they produce
the desired rendering. However, these parameters were de-
signed to be artist-friendly and some parameter configura-
tions are more likely and common than others. Such prior
information could make the optimization more robust as it
constrains the highly ill-posed problem, but cannot be in-
corporated into analytical models.

We instead use a neural network to represent the specular
part of the BRDF. Therefore, we train a model on the ma-
terial datasets (Sec. 4) along with a low dimensional latent
code for each material. The latent code holds all material re-
lated properties, while the model decodes it into reflection
values given viewing directions.

5.2. MLP BRDF

Following [65] we model the problem with a sim-
ple multi-layer perceptron (MLP) consisting of 4 fully-
connected layers with ReLU activation functions. After
the last layer we apply the Softplus function, since reflec-
tion values cannot be negative. The input to this model are
the Rusinkiewicz coordinates [53] of the viewing directions
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Our Neural Shading Pipeline
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Figure 5. Our neural shading pipeline using a custom OptiX [48] routine for lighting and shadow computations followed by our neural
BRDF model.

and the latent code of the material. We encode the coor-
dinates using the multi-frequency sine-cosine embedding
from NeRF [39] and concatenate it with the latent code.
The output of the network is the scalar specular reflection
value. The latent codes are optimized directly using Gener-
ative Latent Code Optimization [4].

In our inverse rendering setting, we usually evaluate
many BRDF samples in a single step, meaning that we
have a large batch size (>1M) compared to a low input
and output data dimension (6D and 1D). In common deep
learning frameworks like PyTorch, each MLP layer would
perform a single matrix multiplication on the GPU. How-
ever, due to the size of the matrix, this requires a lot of
communication between GPU thread blocks via high-level
caches. Müller et al. [42] leverage the fact that the elements
in the batch are independent of each other and divide the
batch into smaller chunks that fit into a single thread block.
Thus, the entire forward pass can be performed without
any inter-thread-block synchronization, leading to its name
fully-fused MLP [42].

We implement our MLP BRDF model explained pre-
viously using both ordinary PyTorch layers and the fully-
fused MLP [42] to compare their performance. Details of
which are further described in Sec. 7.1.

5.3. Normalizing Flow BRDF

In the previous section we modeled the problem as a dis-
criminative task, meaning that we directly learn a mapping
from the parameters (z, ωi, ωo) to the reflection value. This
allows us to evaluate the reflection but does not provide ac-
cess to the underlying reflectance distribution. Further, it
does not enforce physical properties such as energy conser-
vation.

These drawbacks can be tackled by using a generative
model instead. Since our target distribution is low dimen-
sional, we use Normalizing Flows. Therefore, we adopt the
model from [12], which uses the NICE architecture [51]

with piecewise-quadratic coupling layers [41]. The target
distribution is the reflectence over ωi, ωo given a latent code
z and the base distribution is a 3-dimensional uniform dis-
tribution. From a probabilistic perspective, [12] models the
reflection as:

fs(ωi, ωo, z) = p(ωi, ωo|z) (2)

We found a significant issue with this parameterization
as it models the joint distribution over incident and outgo-
ing light direction, while in Monte-Carlo Rendering, ωo is
usually firm and we only want to sample incident directions.

Our Normalizing Flow models the problem as:

fs(ωi, ωo, z) = p(ωi|ωo, z) (3)

While this parameterization enables importance sam-
pling, it disqualifies the usage of Rusinkiewicz coordi-
nates [53] due to the separation of incident and outgoing
light direction. The consequences of this are outlined in
Sec. 7.1. We also found, that the number of layers and
model parameters can be reduced significantly. Details can
be found in the appendix.

5.4. Integration

We integrate our neural BRDF models into the rendering
pipeline of nvdiffrecmc [24]. nvdiffrecmc applies a deferred
rendering scheme with a differentiable rasterizer [29] fol-
lowed by a custom OptiX ray tracing routine to perform
shadow tests and pixel color computations using Disney’s
physically-based shading model [8]. OptiX requires any
computations to be defined as per-pixel CUDA functions,
which contradicts PyTorch’s batch execution model. Fur-
ther, OptiX code is not captured by the autograd engine,
which entails manual gradient computations.

We therefore decided to implement most shading logic
in Python, and only use OptiX for ray tracing routines to
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leverage hardware acceleration. Our modified OptiX ker-
nel samples incident light directions ωi and computes the
corresponding light values Li. We then evaluate our neural
BRDF model and get the specular reflection values, which
we add to the diffuse base color.

A major drawback of this solution is that it’s memory
footprint grows linearly with the number of samples per
pixel (spp).

6. Diffusion Denoiser
Integrated Monte Carlo rendering produces noisy out-

puts [24] at low samples per pixel (spp) values. Authors
use a bilateral denoiser [54] to tackle this issue. However
this denoiser works through bilinear interpolation which of-
ten causes blur and other artificats in the image. The au-
thors tried using a neural denoiser [1, 52]; however this did
not yield better results than the bilateral denoiser and was
hence discarded. Moreover, the UNet denoiser treats this
task as a deterministic problem.

Our key idea is to treat the task as a stochastic problem
and use generative models to solve this. We have seen the
success of GANs [19] in the previous decade which beat
several deterministic neural networks in the tasks of seg-
mentation [28], denoising and super-resolution.

Denoising diffusion models [27] are a class of deep gen-
erative models that learn to generate data samples from
noise by reversing a Markov chain of diffusion steps. They
are trained using variational inference to maximize the like-
lihood of recovering the original data from noisy versions,
using UNets [52] in general. Diffusion models can capture
complex data distributions and generate high-quality sam-
ples for various tasks such as image synthesis. Diffusion
models have several advantages over other generative mod-
els like GANs, such as being stable to train, and also pro-
ducing better quality of results in general.

6.1. Dataset

Using Blender, we render 1000 views per spp of the ob-
ject at 20 spp values. As a result, we create a dataset of
19000 pairs with 4096 as the target spp. For validation, we
render 200 novel views of the bob object. This diversity in
the dataset ensures robustness of the model to a good range
of spp and views.

7. Experiments
7.1. BRDF Pretraining

We qualitatively and quantitatively evaluate our BRDF
models on the MERL dataset [38]. For the qualitative com-
parison, we take the latent codes that were learned during
training and use them to render spheres with the respective
model. The results are depicted in Fig. 8. All models can
capture a wide variety of materials from the database. Still,

we observe minor artifacts in our Normalizing Flow model,
since we cannot use Rusinkiewicz coordinates [53] here.

Table 1 shows the quantitative evaluation of our BRDF
models when trained on both the MERL and EPFL dataset,
compared to the MERL dataset alone. In the first exper-
iment, we compare the mean-squared error (MSE) of our
validation split of the MERL dataset. The validation split
consists of 0.1% randomly sampled values from each mate-
rial and is consistent across all experiments. Here, the Nor-
malizing Flow models perform much better than the MLPs.
It is important to note, however, that both NF models have
vastly more parameters (500k - 1M) than the MLP model
(50k).

Next, we compare the SSIM of the spheres from Fig. 8.
For each model, we compare the rendering generated with
only the latent code with the rendering generated with
the reference reflection values from the MERL database.
Again, the Normalizing Flow models perform better, which
we attribute to the larger model size.

Finally, we compare the runtime it takes to evaluate
1 million BRDF queries. Here the fully-fused MLP [42]
outperforms the Normalizing Flows by an order of magni-
tude. One reason is the smaller model size of the MLP but
the main performance gain is the custom GPU implemen-
tation of the MLP. It would be interesting to see, whether
a fully-fused Normalizing Flow with less parameters would
achieve similar speeds. We leave that part to future work.

7.2. Diffusion denoiser

We train the diffusion model for 110k iterations with a
learning rate of 1e-4 and a batch size of 1 due to mem-
ory limitations. The training was done on a NVIDIA 3090
GPU. For the loss curve, refer to Fig. 14

From Tab. 2, we can observe that our diffusion denoiser
performs significantly better than the Bilateral denoiser in
terms of SSIM and PSNR. The increase in SSIM can be
attributed to the diffusion model enhancing more details
whereas there is loss of structure caused by the blurring of
the bilateral denoiser.

7.3. Inverse Rendering

We compare our inverse rendering architecture with the
baseline nvdiffrecmc [24]. The quantitative comparison
(Tab. 3) shows that our neural material model does not per-
form as well as the Disney model used by the baseline.
We attribute this to the missing importance sampling in the
Monte-Carlo rendering, which is particularly essential for
glossy and metallic materials. The Normalizing Flows mod-
els would probably perform better at the cost of higher run-
times.

The qualitative results in Fig. 10 show this lack of spec-
ular highlights in the re-renderings of our model. How-
ever, the reconstructed material properties in the middle row
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Figure 6. Overview of the diffusion model [27]. The forward process is a Markov chain where data is destroyed by adding noise in steps.
The reverse process uses a neural network to predict the probability density in the previous step.

Method MERL [38] MERL [38] + EPFL [13]
MSE SSIM Runtime(ms / 1M queries) MSE SSIM Runtime(ms / 1M queries)

MLP (PyTorch) 0.030 0.971 11 0.112 0.972 11
MLP (TCNN [42]) 0.029 0.973 1 0.117 0.975 1
NF (iBRDF [12]) 0.006 0.990 1007 0.371 0.643 1007
NF (Ours) 0.019 0.977 569 0.021 0.990 569

Table 1. Quantitative Evaluation of our BRDF models on the MERL dataset, when trained on different datasets.

(a) Input (b) Ground Truth

Figure 7. Example of a low spp - high spp image pair from the
dataset

Method PSNR (dB) SSIM

Bilateral Denoiser 14.49 0.7401
Diffusion Model (ours) 15.88 0.8035

Table 2. Quantitative Results of the diffusion denoiser training.

Method MSE PSNR (dB) SSIM

nvdiffrecmc 0.0006 32.455 0.969
Ours w/ neural BRDF 0.0014 28.407 0.949

Table 3. Quantitative evaluation of our inverse rendering pipeline.

show, that our neural BRDF correctly learned that the pa-
rameters are constant. Note, that the reconstructed mate-
rial properties of our method depict a latent code, which is
why we cannot compare the colors with the ground-truth

(a) MLP BRDF (b) iBRDF [12] (c) NF BRDF (d) Ground Truth

Figure 8. Qualitative comparison of our BRDF models evaluation
on different materials from the MERL dataset.

nor nvdiffrecmc [24].
In addition to the neural BRDF model, we also study the

results of using the diffusion denoiser at concurrence. Due
to memory limitations, we render our images at a resolu-
tion of 128x128 during training and inference times. From
the qualitative comparison in Fig. 11, one can see that the
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(a) Input (b) Bilateral (c) Diffusion (d) Ground Truth

Figure 9. Qualitative Results of the denoisers

(a) nvdiffrecmc [24] (b) Ours (c) GT

Figure 10. Qualitative comparison of our inverse rendering results
with nvdiffrecmc [24]: top row: reconstructed diffuse texture, mid
row: reconstructed material properties, bottom row: re-rendering
of reconstructed object.

Method MSE PSNR (dB) SSIM

Ours w/ Bilateral 0.0177 17.515 0.7633
Ours w/ Diffusion 0.0148 18.273 0.7859

Table 4. Quantitative evaluation of denoiser at a render resolution
of 128x128.

output mesh generated by the pipeline using the diffusion
denoiser is more complete and has significantly less arti-
facts as compared to the ones using the bilateral denoiser.
We also note that our diffusion model might be overfitting
on the dataset generated using Blender.

Quantitatively from Tab. 4, we observe that even at low
render resolutions, our pipeline with diffusion denoiser out-
performs the one with the bilateral denoiser in all the met-

(a) Bilateral (b) Diffusion (c) GT

Figure 11. Ablation study of different denoisers in our inverse
rendering pipeline. Top row: reconstructed diffuse texture, mid
row: reconstructed material properties, bottom row: re-rendering
of reconstructed object.

rics used for comparison.

8. Conclusion
We extended nvdiffrecmc [24] by a neural material model

and a diffusion based denoiser. While the neural material
models promise to bring prior knowledge to the vastly ill-
posed problem of inverse rendering, we were facing issues
regarding their runtime and a possible lack of importance
sampling, which needs to be addressed in future work. Our
diffusion denoiser demonstrated better results than the bilat-
eral denoiser. Further improvements can be made if we also
vary the lighting in the data. This would make the diffusion
model invariant to lighting. The diffusion model increases
inference time and memory requirements, which is why we
suggest the usage of latent diffusion models for better per-
formance and reduced computation requirements.
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A. Optimization and Regularization

A.1. Image Loss

Our renderer employs physically-based shading tech-
niques to create high dynamic range images. Therefore,
the objective function needs to be able to handle a broad
spectrum of floating-point values. To achieve this, we have
adopted the approach of recent research in differentiable
rendering [25,43]. Our image space loss, Limage, calculates
the L1 norm on tonemapped colors. We use the tone map
operator, T, to transform linear radiance values, x, which
follows the formula T (x) = τ(log(x + 1)). Here, τ(x)
represents the sRGB transfer function.

τ(x) =

{
12.92x x ≤ 0.0031308

(1 + a)x1/2.4 − a x > 0.0031308

a = 0.055

(4)

A.2. Regularizers

In our particular setting, which involves multi-view im-
ages captured under constant lighting, it is necessary to use
several prior assumptions in order to guide the optimization
process towards achieving a satisfactory separation of the
underlying factors such as geometry, materials, and light-
ing. While we would prefer to minimize the use of regu-
larization, we rely on various smoothness regularizers for
parameters such as albedo, specular parameters, and geo-
metric surface normal, as mentioned next:

Lkd
=

1

|xsurf |
∑
xsurf

|kd (xsurf )− kd (xsurf + ϵ)| (5)

The term xsurf refers to a position in world space lo-
cated on the surface of the object, and a small random dis-
placement vector denoted by ϵ ∼ N (0, σ = 0.01) and
following a normal distribution with mean 0 and standard
deviation of 0.01 is added to this position. kd refers to
the albedo texture map. Regularizing the geometric surface
normal, prior to the application of normal map perturba-
tions, is a novel approach compared to [43] and serves to
promote smoother geometry, particularly during the early
stages of training.

Additionally, we note that normal mapping, which in-
volves perturbing surface normals through a texture lookup,
also benefits from regularization. While normal mapping
can be a powerful tool for simulating local micro-geometry,
the decorrelation between geometry and surface normal can
sometimes pose problems. We observed that with normal
mapping enabled, the environment light was incorrectly
used as a color dictionary, where normal perturbations re-
oriented the normals of a geometric element in order to look
up a desired color. To mitigate this issue, we employ the

following regularizer. Given a normal perturbation n
′

in
tangent space, our loss function is defined as:

Ln′ =
1

|xsurf |
∑
xsurf

1− n′ (xsurf ) + n′ (xsurf + ϵ)

|n′ (xsurf ) + n′ (xsurf + ϵ)|︸ ︷︷ ︸
Half-angle vector

·(0, 0, 1)

(6)
Intuitively, we enforce that normal perturbations, mod-

eling micro-geometry, randomly selected in a small local
area, have an expected value of the unperturbed tangent
space surface normal, (0, 0, 1). As mentioned in the pa-
per, we additionally regularize based on monochrome im-
age loss between the demodulated lighting terms and the
reference image:

Llight = |Y (T (cd + cs))− V (T (Iref))|1 (7)

Here, T is the tonemap operator described in the previ-
ous paragraph. cd is demodulated diffuse lighting, cs is
specular lighting, and Iref is the target reference image.
Monochrome images are computed through the simple lu-
minance operator, Y (x) = (xr+xg+xb) /3, and HSV-value,
V (x) = max (xr, xg, xb). While the regularizer is limited by
our inability to demodulate the reference image, it greatly
increases lighting detail, which is particularly effective in
datasets with high frequency lighting. We compute the fi-
nal loss as a weighted combination of the image loss and
regularizer terms:

L = Limage + λkd︸︷︷︸
=0.1

Lkd
+ λkorm︸ ︷︷ ︸

=0.05

Lkorm + λn︸︷︷︸
=0.025

Ln

+ λn′︸︷︷︸
=0.25

Ln′ + λlight︸ ︷︷ ︸
=0.15

Llight (8)

A.3. Optimization Details

To optimize the parameters for geometry, material, and
lighting, we use the Adam optimizer with default settings.
Our approach for parameterizing geometry involves repre-
senting SDF values on a three-dimensional grid, with a per-
turbation vector assigned to each grid-vertex. Material and
lighting are encoded in textures or high-frequency functions
that are encoded through a neural network such as an MLP
with positional encoding. We typically use varying learning
rates for geometry, material, and lighting, with lighting hav-
ing the highest learning rate and material having the lowest.
Our approach is based on the publically available codebase
of [43], and we closely follow their methodology for details.
Note that we can capture high-frequency lighting details for
specular objects.

It’s worth noting that the initial stages of optimization,
which begin with random geometry and involve significant
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Figure 12. Adaptive Parameterization [13]

topology changes, are crucial in obtaining a satisfactory fi-
nal result. However, the shadow test poses a challenge, as
modifications to the geometry can drastically alter the light-
ing intensity in previously shadowed areas, leading to the
optimization process becoming stuck in bad local minima.
However, there is a problem, where the optimizer is unable
to carve out the shape of the object. To address this issue,
we progressively introduce the shadow term as optimization
progresses.

We compute the color according to the rendering equa-
tion:

L(ωo) =

∫
Ω

Li(ωi)f(ωi, ωo)(ωi · n)dωi (9)

where Li(ωi) = L
′

i(ωi)H(ωi) can be separated into a
lighting term, L

′

i(ωi), and visibility term,H(ωi). Rather
than using binary visibility, we introduce a light leakage
term, τ , and linearly fade in the shadow contributions over
the first 1750 iterations:

H(ωi, τ) =

{
1− τ if intersect ray(ωi)

1 otherwise
(10)

It is noted that gradually blending in the shadow term has
a large impact on early convergence. In particular, since we
start from a random topology, carving out empty space or
adding geometry may have a large impact on overall shad-
ing, causing spiky and noisy gradients. The denoiser may
also interfere with early topology optimization (blurred vis-
ibility gradients). This is particularly prominent when the
denoiser parameters are trained along with scene parame-
ters. Therefore, for neural denoisers, which have no easily
configurable filter width, we instead linearly blend between
the noisy and denoised images to create a smooth progres-
sion.

B. BRDF Model Details
MLP As mentioned in the main paper, the MLP con-

sists of 4 fully-connected layers with ReLU activation and a

Figure 13. Pretrain result of EPFL+MERL

hidden dimension of 128. We use 2 frequencies of the sine-
cosine encoding [59] to encode our viewing angles. The la-
tent code is 3-dimensional and initialized with a zero-mean
Gaussian distribution and a standard deviation of 0.01.

Normalizing Flow For details about the iBRDF
model [12], please refer to the respective paper. In our adap-
tation, we use 4 NICE layers [51] and a latent dimension of
16, which is initialized with the same Gaussian as the MLP.
We normalize ωi in the [0, 1] range, while ωo is encoded
with 8 frequencies of sine and cosine. To further reduce the
model parameters, we shrink the size of the U-Net within
each layer. While the iBRDF model [12] consists of around
1 million parameters, ours has only about 500k, while still
achieving similar quantitative results.

Optimization To train the BRDF models, we use the
Adam optimizer with an initial learning rate of 0.001. The
learning rate is reduced every 10,000 steps by a factor of
0.1. A single batch consists of 4 different materials with
8192 samples each and we train for 5,000 epochs in total.

C. Denoising

Diffusion models are latent variable models of the form
pθ (x0) :=

∫
pθ (x0:T ) dx1:T , where x1, ..., xT are latents

of the same dimensionality as the data x0 q(x0). The joint
distribution pθ(x0:T ) is called the reverse process, and is
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Figure 14. Loss curve of the diffusion model.

defined as a Markov chain with learned Gaussian transitions
starting at
p (xT ) = N (xT ;0, I) :

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))
(11)

What distinguishes diffusion models from other types
of latent variable models is that the approximate posterior
q(x1:T |x0), called the forward process or diffusion pro-
cess, is fixed to a Markov chain that gradually adds Gaus-
sian noise to the data according to a variance schedule
β1, ..., βT :

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(12)

D. PyTorch Lightning
Pytorch Lightning offers a standardized training loop,

ensuring reproducible results across experiments and ma-
chines, as well as scaling training across multiple GPUs or
machines. Additionally, it provides debugging and testing
tools, such as automated testing and validation checks, and
a lightweight model checkpoint format for easier model de-
ployment. Overall, PyTorch Lightning offers a more effi-
cient and scalable way to develop and train neural networks.
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